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Abstract 
Proportional colored symmetry is defined and the 
corresponding proportional colored-symmetry struc- 
tures are derived from Belov (p)-symmetry plane 
groups. 

The concept of P-symmetry (permutation sym- 
metry), introduced by Zamorzaev (Zamorzaev, 
Galyarskij & Palistrant, 1978; Zamorzaev, Karpova, 
Lungu & Palistrant, 1986), is defined as follows. If P 
is a permutation group under the set C = {1,2 . . . . .  p} 
and G is a discrete symmetry group, every trans- 
formation S = c s = s c ,  c E P  and s E G ,  is a P- 
symmetry transformation. Every group G e, derived 
from G by substitution of symmetries by P- 
symmetries, is a P-symmetry group. If the substi- 
tutions included in G P exhaust the group P, G P is a 
complete P-symmetry group. Every complete P- 
symmetry group G p can be derived from its generat- 
ing group G by searching in G and P for the normal 
subgroups H and Q, for which the isomorphism G/H 
= P/Q holds, by paired multiplication of the cosets 
corresponding in this isomorphism and by the unifi- 
cation of the products obtained. The groups of com- 
plete P-symmetry fall into senior (G = H and G p=  
G x P), junior (G/H ~ P and G p -  G) and middle 
groups for Q = P, Q = I and I c Q c P, respectively. 
In this paper, only the junior P-symmetry groups of 
complete P-symmetry will be considered. 

Let P be a permutation group under the set C = 
{1,2,...,p}. C' is a coloring of the set C by k colors if 
to every i ( i E C )  is linked an index j ( j E  {1,2,...,k}) 
denoting certain properties (e.g. color). A coloring is 
termed complete if all k colors (k_p)  are used. From 
every coloring C' the corresponding group P '  is 
induced. Two colorings, C' and C",  of the same set 
C with k colors are equivalent with regard to the 
group P if there is a color-preserving permutation, f 
E P [f(ij) =f(i)j] such that f ( C ' )  = C " .  The color- 
ing C' is termed symmetrical (or reducible) if there is 
a color-preserving non-identical permutation f E  P 
such that f ( C ' )  = C'.  
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In order to find all the colorings of the set C, 
which are non-equivalent with regard to a specific 
permutation group P, it is appropriate to use the 
geometrical scheme corresponding to the P- 
symmetry considered. For example, Belov P- 
symmetry with the permutation group P -- Cp, gener- 
ated by the cyclic permutation c = (1 2 ... p), can be 
modeled by a regular oriented p-gon. Pawley (P')- 
symmetry with the regular dihedral permutation 
group P = Dp,2p ,, generated by the permutations c = 
(1 2 ...p)(2p 2 p -  1 . . . p+  1) and c~ =(1 p +  1)(2p + 
2)...(p 2p), can be modeled by a truncated regular 
p-gon etc. 

According to the geometrical classification of P- 
symmetries (Zamorzaev & Palistrant, 1981; 
Zamorzaev, Karpova, Lungu & Palistrant, 1986), the 
group P is isomorphic to the discrete crystallo- 
graphic point group P0. In order to avoid the crystal- 
lographic restriction, we may accept that the group P 
is isomorphic to the point group Po belonging to one 

N 

of the seven infinite classes of point groups: n, (2n), 
n:m, nm, n:2, (2n)m and mn:m. Here, every P- 
symmetry possesses the corresponding geometrical 
scheme. 

The next concept to consider is the W-symmetry 
introduced by Koptsik & Kotsev (Koptsik & Kotsev, 
1974; Koptsik, 1988). Since the idea of W-symmetry 
is closely connected to the problem of different 
colorings of a symmetrical figure (Zamorzaev, 
Karpova, Lungu & Palistrant, 1986), for simpli- 
fication, this approach will be accepted. 

If M is a point in a general position with regard to 
the discrete finite symmetry group Po, to each point 
of the orbit Po(M)= {g(M)[g E P0} can correspond 
one from k different properties (e.g. colors). Two 
colorings of the orbit corresponding to the symmetry 
group P0 are equal if the symmetry of the orbit 
transforms the first colored orbit into the second 
without changing the colors of that orbit points. The 
coloring of the orbit is irreducible if and only if the 
colored orbit is asymmetrical. With the correspond- 
ing geometrical schemes for the P-symmetries, non- 
equivalent orbit colorings are simply visible. 

The concept of proportional colored symmetry 
originated from Grfinbaum, Grfinbaum & Shephard 
(1986). Let G be a plane symmetry group, F a figure 
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satisfying it, G ~" the P-symmetry group derived from 
G with the permutation group P under the set C 
(isomorphic to a discrete point group P0), FP a figure 
with the P-symmetry group G p, C'  a coloring of the 
set C by k colors, P '  a group induced by the coloring 
C'  and F P' the induced coloring of the figure F P. 
The colored-symmetry structure F' ,  obtained from 
F P' by the transformation ij-~j, is a proportional 
colored symmetry structure. If two proportional 
symmetry structures are equivalent, there is an affine 
transformation converting one structure into the 
other, without changing the colors. In order to find 
all the non-equivalent proportional colored- 
symmetry structures derived from a plane symmetry 
group G, we can use the following algorithm: (a) find 
all the P-symmetry groups derived from the sym- 
metry group G, with the group P fixed; (b) find all 
the non-equivalent colorings of the set C with regard 
to the group P; (c) from the induced figures F P' 
resulting from the groups (a) and colorings (b), 
derive, using the transformation i j~ j ,  all the non- 
equivalent proportional colored symmetry structures 
F ' .  The term 'proportional colored symmetry struc- 
tures' denotes that the proportion of colors used for 
the coloring C'  is extended to the figure F' .  Also, 
among all the non-equivalent colorings, we can dis- 
tinguish the colorings with the same proportion of 
colors. 

In this paper, we will restrict our attention to the 
proportional colored symmetry structures derived 
from Belov's (P)-symmetry plane groups. For p = 2, 
there are 46 antisymmetry groups, giving 46 com- 
plete proportional symmetry structures with a 1:1 
proportion of colors. Except for p = 3, where six 
additional (3)-symmetry groups exist: {a,b}(3(3)), 
{a,b}(3(-3)), {a(3),b(3)}(3(3)), {a(3),b(3)}(m3), {a,b}(6(3)), 
{a,b}(6(-3)); p = 4, where six additional (4)-symmetry 
groups exist: {a(2),b(2)}(2b12m~4)4), {a,b}(4(4)), 
{a,b}(4(- 4)), {a(2),b(Z)}(4(4)), {a(Z),b~2)}(4(4)b/Zm~4), 
{a(Z),b(Z)}(4(a)b/2m~-~4)); and p = 6, where three addi- 
tional (6)-symmetry groups exist: {a(3),b(3~}(m~2)3), 
{a,b}(6(6)); {a,b}(6(-6)); for every p = 2n + 1 (n ~ N), 
240(p) (p)-symmetry groups exist: {atP:q),b}, 
{a,b~'/q)}(m), {a,b~'/2q)}(b/2mC°/q)), {a,(a+ b)/2c°/q)}(m), 
where 40 is Euler's function; for every p = 4n (n ~ N), 
440(p) (p)-symmetry groups exist: {aCP'q),b}, 
{a,b(P/q)}(m), {a,bc°lq)}(m(2)), {a(Z),bc°lq)}(m), {a,bW'zq)}- 
(b/2mC°/q)), {a(~),b~nq)}(b/2mW/q)), {a,(a + b)/2~P/q)}(m), 
{a,(a+b)/2~'/q)}(m(Z)); and for p = 4 n +  2 (n~N) ,  
1 1 40(p)/2 (p)-symmetry groups exist: {aW/q),b}, 
{a,b(P/q)}(m), {a,bC°/zq)}(m(2)), {a,bW"q)}(m(~)), 
{a(2),b(plzq)}(m), {a(2),b(plq)}(m), {a,b~p'zq)}(b/ZmW"q)), 
{a(2),b~p/2q)}(b/2m~P/q)), {a,(a + b)/2~P/q)}(m), {a,(a + b)/ 
2(p/2q)}(m(2)), {a,(a + b)/2c°/q)}(m(2)). Knowing this, in 
order to derive all the non-equivalent proportional 
colored symmetry structures from the Belov (p)- 
symmetry plane groups, we only need to find the 

number of different irreducible colorings of a regular 
oriented p-gon by k colors. 

Theorem. The number of different colorings of a 
regular oriented p-gon by k colors, p~, is given by the 
formula 

p;  = (1/p)~ 40(plq)k q, 
qlP 

where 40 is Euler's function, defined as ~o(m)= m × 
IV ,= l ( 1 -  l/p,), and m is given by the product of the 

.-. na l~a-~ nan distinct prime numbers p,, pz ..... p,, as m t,, t,2-...t,, • 
The sum is then taken for all q divisors of p (i.e. for 
all q, q[p). 

Euler's function, ~p(m), can also be defined as the 
number of natural numbers not exceeding m, which 
are mutually prime with m. Amongst them, there are 

k - I  ~vkl' = p k ' -  ~;=, (~) ~il' complete colorings, where (~) 
is the binomial coefficient (~)= k!/(k- i ) ! i ! .  

Among the Lo~,]' complete colorings, there are 

(pD ' =  h i ' -  (q~,)' 
qL,, 

I < q < p  

complete irreducible colorings. 
As an example of proportional colored-symmetry 

structures derived from Belov (p)-symmetry plane 
groups, for the crystallographic values of p = 3, 4, 6 
and k = 2, we have 20, 42 and 126, respectively, 
complete irreducible proportional colored-symmetry 
structures. Every proportional colored-symmetry 
structure can be denoted by a symbol (G~,P'). For 

k IX I\ 
X~IilXT TIX~ 
XZlZlX~I~/X~ 
XZlZ/XZl~/X~ 
XZlZ/XZl~/Xi 
X!IMXllY/XY 
XZlMX~I~/X~ 
XZlZlX21~IX~ 
X21ZlX~I~IX~ 

x IX 
x~ ~IXY 
xz 21x7 
x~ !IX~ 
x2 glk~ 
X! 21XY 
XZlzlX~ 
X~l~/Xi 
XzlzlXg 

x IX 
x~i~/x~ 
x~ 21x~ 
X2 RIXY 
X2 21X~ 
X~lg/Xgl 
X2 2/xl i 
X~I~/X~ 

IX IX 
Yl xY I _~I xY 
2_-I x2- I z/x2- 
21x2121x2 
21X2 l~IX~ 
Y/xY I Xl x~ 
7_1 x-~ I Zl xz 
ZlXi_lZlX2 
21X2_. 121X2 

(a) 

IX IX IX 
~/X~ 12_--/X~ ~/XY 
2-IX2_-] 21X2 21X2 
I/X2 Ii/Xi__ _/X,-~- -~ 
~IX~_IZlX2 ZlXZ 
21X!121X! 21X! 
2/X2_ 12 /X2 2/X2 
I/X2 l/X2 Y/X2 
2-1x_~ ZlX2_ 2_-ix_~ 

(b) 

IX IX IX 

~/X~l~/X~l~/\~l 
~lX~l~lX!l¥1X~l 
21X~I21X21~IX21 
~IX¥ ¥1X~ ~IXYI 
~/X~l~/X~l~/X~l 

~/x7 ~/x7 ~/x~ 
(c) 

IX IX IX 
~lX~l~lxYl~lX~ 
2/X~lZ/XZl2/X2 
2 / X ~ I 2 / X 2 I ~ / X ~  
~IX~I~IX~I~IX~ 
ilXl !IX!lllX! 
21X2 ZlX~IZlXZ 
2/\2 2/\212/X2 
~IX7 ~IXTiZlXZ 

/ 

21 
21 
2_1 
!I 
21 
2_1 
21 

IX IX 
~/x!I~/XY 
ZlXZl~lX~ 
!/Xgll/X2 
21XZI~IX~ 
ZlX!I~IX! 
2/X~I2/X2 
~IXZ i/X~ 
21\2 ~IX2 

IX I 

21X2 ~I 
ilX2 !1 
~/x~ R~ 
~/x~ 2/ 
2/x2 R/ 
YlXg !l 
~IX21Z/ 

I\ I\ I\ I 

~IX~I~I\~IMX~IM 
21XY TIX2 21Xllll 
~lX~ ~/XZlzlX212/ 
ilX2121X~l!lXZl2/ 
~/XR R/X212/XR/M 
~lXl ~IX~ ~IX~IM 
~IX~l~IX~l~IX~l~l 

Fig. 1. Irreducible proportional symmetry structures with a 1:3 
proportion of colors: (a) ({a,h~4~}(m). {(1,223_,42)}), (b) 
({a,b~4'}(mC2'), {(12 22 32 4.,)}) and (c) ({a~2',b~4'}(m), {(1,22 32 42)}). 
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example, from the symmetry group {a,b}(m) and P = 
C4-= {(1 2 3 4)} are derived nine complete irreducible 
proportional symmetry structures: ({a,b(4)}(m), 
{(1, 22 32 4:)}), ({a,b(4)}(m(Z)), {(1, 22 3: 4z)}), 
({a(~),b(4)}(m), {(ll 2z3z4z)}] with a 1:3 proportion 
of colors (Fig. 1); ({a,b(4)}(m), {(1, 2, 3~4z)}), 
({a,b(4)}(m(:)), {(1, 21 3z 4 z ) } ) ,  ({a(Z),b(4)}(m), 
{(ll 2, 3z 4z)}) with a 2:2 proportion of colors (Fig. 
2); and ({a,b(4)}(m), {(112, 3~ 42)}), ({a,b(4)}(m(2)), 
{(1~ 2, 31 4z)}), ({a(~),b(4)}(m), {(1.2.3.4z)}) with a 
3:1 proportion of colors. We notice that the propor- 

\ I\ I\ I\ I\ I\ I\ I\ I 

X!IMX~IMX! MXl Y/XY Y/xY l / x l  ~IX~IYI 
X~l~lXgl~lXglMX~l~lX~ ~lX~ ~lX~lglX~l~l 
XgI2/X2 glXg g/xg i /x i  i /x i  ~/x~12/x2 ~/ 
X!l!/X!l!/X~ ! /Xl 7/X7 7/X~ !/X~IT/X¥ 71 
X~l~lX~l~lX~l!lX¥171x7 71xl ~IX~I~IX~ITI 
XglMXglg/Xg 2/X~ 7/X7 7/X2 2/X2 glXgl~l 
X~l~lX2121X~l~lXglglXglglXglglXg MX~I~I 

(a) 

X IX IX IX IX IX IX IX I 
ii ~IX~ ~IX~ glX~ ~IX~ ~IX~ ~IX~ ~IX~ ~I 

X2 !lX~l!lXgl!lX~ !/X~ !/X~ !IXg !lXglM 
X2 l/Xg !/Xg !/Xg !/Xg !/Xg !/Xg !/X~ l /  
X~ glX! ~lX! glX! MX!IMX!IglX! MX! ~/ 
XY 2IX! ~/X! g/Xl ~/X! g/X! ~/Xl ~/X! g/ 
X2 ~/X~I!/X~ ~/X~ !/Xg !/Xg !/X~ !/Xgl!/ 
__ !lX~l!lXgl!lXgl!lX~l!lXgl!lXgl!lX~l!l 

(b) 
X IX IX IX IX IX Ix IX I 
x~l~/x~ ~/x~l~/x~l~/x~ ~/x~l~/x~l~/x~l~/ 
X~l~/X~ ~/xi !/x~ ~/x~ ~/x~ ~/x~ ~/x~ ~/ 
X[ I/X7 1/X2 i / X !  ! /Xg R/Xl !/Xg R/X! l /  

X!IMX7 ~IXTI~IX2121XilYIX~I~IX!I!IXglgl 
X!l!IX~ ~IX¥ ~IXg glX~ ~IX~ ~IX! !IX~Igl 
XR RIXY IIX2 21Xi ilX2 21X!l!IXg ~IX! !l 
XZlZlX~ ~IX~I~IXililX~I~IX~I~IXZlZlX~I~I 

(c) 

Fig. 2. Irreducible proportional symmetry structures with a 2:2 
proportion of colors: (a) ({a,b~a~}(m), {(1, 2, 3: 4~)}), (b) 
({a,b'*'}(m'~'), {(1, 2, 32 4~)}) and (c) ({a'2',b'~'}(m), {(1, 2, 32 4:)}). 

tional colored-symmetry structures derived from the 
same P-symmetry groups, with the group P ' =  
{(11 22 31 42)} and a 2:2 proportion of colors, are not 
included in the list because the coloring of the 
regular oriented 4-gon resulting in the group P ' - -  
{(11 2z 31 42)} is reducible and the structures obtained 
belong to the class of antisymmetry colorings with a 
1:1 proportion of colors. 

Since in the theory of P-symmetry general results 
for the P-symmetry plane groups are not complete 
(Zamorzaev, Galyarskij & Palistrant, 1978; 
Zamorzaev, Karpova, Lungu & Palistrant, 1986; 
Wieting, 1982), as well as in the theory of different 
colorings of symmetrical figures, further progress in 
the derivation of proportional colored-symmetry 
structures, solely represented by the specific com- 
bination of non-positional symmetry (P-symmetry) 
and positional symmetry (W-symmetry), will be con- 
ditioned by the future development of both fields. 
The idea of proportional coloring of crystallographic 
structures may be useful in the classification schemes 
of P- and W-symmetry structures. 
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